TiO<sub>2</sub> Anode Material for All-Solid-State Battery Using NASICON Li<sub>1.5</sub>Al<sub>0.5</sub>Ge<sub>1.5</sub>(PO<sub>4</sub>)<sub>3</sub> as Lithium Ion Conductor

نویسندگان

چکیده

We have been developing sintered multilayer oxide-based all-solid-state batteries. Anode active material rutile-type TiO2 was not reacted with amorphous Na superionic conductor (NASICON)-type solid electrolyte Li1.5Al0.5Ge1.5(PO4)3 (LAGP) even after at 600 °C in a nitrogen atmosphere from the XRD patterns. The charge/discharge behavior of electrochemical measuring cell (when using non-aqueous electrolyte) different that TiO2. However, anatase-type changed sintering process. Additionally, result input/output characteristics battery, as anode 3 times higher discharge capacity than current value 25.6 µA mm−2. Finally, we successfully measured Raman spectroscopy all-solid-battery and shift peaks were reversibility during charge/discharge. Based on these findings, conclude maintained strong crystalline structure high Li diffusivity when LAGP. It suggested is suitable for batteries requiring

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A high performance lithium-ion battery using LiNa0.02K0.01FePO4/C as cathode material and anatase TiO2 nanotube arrays as anode material

In this paper we report on a lithium ion battery (LIB) based on improved olivine lithium iron phosphate/carbon (LiFePO4/C) as cathode material and LiNa0.02K0.01FePO4/C  synthesized by sol-gel method and TiO2 nanotube arrays (TNAs) with an anatase phasesynthesized through anodization of Ti foil as an anode electrode. Crystallographic structure and surface morphology of the cathode and anode mate...

متن کامل

Initial Discharge Capacity of Manganese Cobaltite as Anode Material for Lithium Ion Batteries

Nanostructured manganese cobalt oxide spinel (MnCo2O4) are prepared by co-precipitation method and calcined at 650 and 750°C. Morphological studies show that by increasing the calcination temperature from 650 to 750°C, morphology of the particles changes from quasi-plate to polyhedral. The MnCo2O4 calcined at 650°C could deliver an initial discharge capacity of 1438 mAh g-1 under current densit...

متن کامل

Synthesis of Hard Carbon- Silicon Nanocomposite as Anode Active Material for Lithium-Ion Batteries

In this research, using phenolic resin as the precursor of carbon and various amounts of ethylene glycol as a pore former, porous samples of hard carbon were synthesized. Samples were characterized by x-ray diffraction (XRD) and N2 adsorption-desorption methods. Broad diffraction peaks represent the amorphous structure of samples. Moreover, the gas adsorption-desorption curves showed that the a...

متن کامل

Micrometric Growth of V2O5Hexagonal Nano-plates as an Active Material for Lithium Ion Battery Cathode Electrode

This manuscript reports the synthesis of V2O5 nanostructures using reflux method, without using additives such as surface reactants. The influence of reaction parameters like temperature and concentration on the growth of nanostructures have been investigated. It has been observed that the nanostructures are formed with a hexagonal nano-plate morphology, grown from a common core. The diameter o...

متن کامل

Unique Urchin-like Ca2Ge7O16 Hierarchical Hollow Microspheres as Anode Material for the Lithium Ion Battery

Germanium is an outstanding anode material in terms of electrochemical performance, especially rate capability, but its developments are hindered by its high price because it is rare in the crust of earth, and its huge volume variation during the lithium insertion and extraction. Introducing other cheaper elements into the germanium-based material is an efficient way to dilute the high price, b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electrochemistry

سال: 2023

ISSN: ['2186-2451', '1344-3542']

DOI: https://doi.org/10.5796/electrochemistry.23-00023